Eta Carinae's Hard X-ray Tail Measured with XMM-Newton and NuSTAR
Abstract
Massive binary stellar systems drive shock plasma heating via the collision of winds from two stars (wind-wind collision: WWC). With typical (pre-shock) wind speeds of ≥1000 km s-1, temperatures can reach as high as several tens of millions of Kelvin. X-ray emission from these stable shocks provides important tests of shock physics. While the spectrum below 10 keV is complicated by discrete line emission and absorption components, the X-ray spectrum above 10 keV is relatively simple. This high-energy emission therefore provides important clues on the condition of the maximum thermalized plasma where the winds collide head-on, while also providing important information about particle acceleration through the shock.We obtained two coordinated X-ray observations of the super massive binary system η Carinae with XMM-Newton and NuSTAR, during the elevated X-ray flux state and just before the X-ray minimum flux state around the periastron passage in the summer of 2014. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ~50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ~6 keV plasma, about 2 keV higher than those measured from the iron K emission line complex. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the >5 keV emission by 40% in a day. The extreme absorption to the hardest emission component (NH~1e24 cm-2) suggests increased obscuration of the WWC X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the WWC apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV gamma-ray source.We also introduce the result of the latest XMM-Newton and NuSTAR joint observation of η Car performed in 2015 July.
- Publication:
-
AAS/High Energy Astrophysics Division #15
- Pub Date:
- April 2016
- Bibcode:
- 2016HEAD...1530604H